Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

M. Iqbal Choudhary, ${ }^{\text {a }}$
Krishna Prasad Devkota, ${ }^{\text {a }}$ Shazia
Anjum, ${ }^{\text {a }}$ Azhar Abdul Rahman, ${ }^{\text {b }}$
Hoong-Kun Fun ${ }^{\text {b }}$ and Atta-ur-Rahman ${ }^{\text {a }}$
${ }^{\text {a }}$ HEJ Research Institute of Chemistry, International Centre for Chemical Sciences, University of Karachi, Karachi 75270, Pakistan, and ${ }^{\text {b }}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Correspondence e-mail: hkfun@usm.my

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.058$
$w R$ factor $=0.159$
Data-to-parameter ratio $=11.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

20-Dimethylamino-3a-methylamino-5a-pregnane

In the title molecule, $\mathrm{C}_{24} \mathrm{H}_{44} \mathrm{~N}_{2}$, also known as pachysamine A , all four rings are trans fused. The cylohexane rings adopt chair conformations and the cyclopentane ring a half-chair form. The methylamino and dimethylaminoethyl substituents are equatorially attached. The crystal structure is stabilized by van der Waals forces.

Comment

In the flora of Nepal, the genus Sarcococca is represented by four species (Hara et al., 1982), which are important producers of steroidal alkaloids, of which Sarcococca hookeriana (Baill.) Hook. F. (Buxaceae), is one. S. hookeriana is an evergreen shrub, widely distributed from Eastern to Western Nepal, North Assam, South Tibet and Bhutan. Rural communities in Nepal have been using the root extracts of this plant against gout (Rajbhandari, 2002). Alkaloids from this plant have been reported to exhibit important biological activities such as antibacterial, anticholinesterase (Atta-ur-Rahman et al., 1998, 2002), antitumor (Zou et al., 1997), and antiulcer (Qiu et al., 1994). The title compound, (I), has, for the first time, been isolated from the genus Sarcococca hookeriana. It was previously isolated from same family but from the different genus Pachysandra terminalis (Buxaceae). We report here the crystal structure of (I). The results may be useful in molecular modelling and docking studies of this potent triterpenoidal alkaloid with cholinesterases, which is the current interest of our research group.

(I)

The molecule contains a fused four-ring system $A / B / C / D$. The $A / B, B / C$ and C / D ring junctions are trans-fused. In the steroid nucleus, the cyclohexane rings (A, B and C) adopt chair conformations, whereas the cyclopentane ring (D) exhibits a half-chair form. The methylamino substituent is attached equatorially to ring $A[\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 1=$ $\left.174.9(2)^{\circ}\right]$ and the $\mathrm{C} 24-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 2$ torsion angle of $170.6(3)^{\circ}$ indicates a (+)-antiperiplanar conformation. The dimethylaminoethyl group is attached equatorially to ring D. The methyl substituents at atoms C10 and C13 are oriented to the same side of the steroid nucleus. The sum of the bond

Received 15 September 2003
Accepted 1 October 2003
Online 15 October 2003

Figure 1
The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2
A view, down the b axis, of the molecular packing in (I).
angles around $\mathrm{N} 1\left(331.2^{\circ}\right)$ and $\mathrm{N} 2\left(339.0^{\circ}\right)$ is indicative of $s p^{3}$ character. The bond lengths in (I) show normal values (Allen et al., 1987). In the crystal structure, the molecules are packed in zigzag manner, without any classical hydrogen bonds.

Experimental

Air-dried, whole plant (31.0 kg) of Sarcococca hookeriana was extracted with 80% methanol-water (120 l) over a period of 15 d at room temperature. The mixture was filtered and concentrated under reduced pressure. The concentrated methanolic aqueous extract (2.8 kg) was dissolved in distilled water (12 l) and defatted with petroleum ether (30 l). The aqueous layer was then extracted with dichloromethane (30 l) to obtain a neutral fraction (107.8 g). The aqueous fraction was then acidified with acetic acid ($\mathrm{pH} 3-4$) and extracted with dichloromethane (30 l) to obtain the acidic fraction $(85.0 \mathrm{~g})$. Thereafter, the aqueous fraction was rendered basic with ammonia solution ($\mathrm{pH} 9-10$) and extracted with dichloromethane to obtain the basic fraction of the plant $(24.7 \mathrm{~g})$. The alkaline fraction was adsorbed on silica gel (E. Merck, type 60, 70-230 mesh) and eluted with different gradients of petroleum ether and acetone. Elution with 25% acetone in petroleum ether afforded a sub-fraction $(4.5 \mathrm{~g})$ which was further chromatographed on a silica gel (E. Merck, flash, 234-300 mesh) column to afford pachsamine A, (I), after
elution of petroleum ether-acetone-diethylamine (75:24:1) in $1.74 \times$ $10^{-3} \%$ yield $\left(R_{F}=0.46,50 \%\right.$ acetone: hexane + few drops of diethylamine). Compound (I) was recrystallized from petroleum ether-chloroform and acetone to yield block-shaped, colorless single crystals. The melting point of (I) is $444-447 \mathrm{~K}$, similar to that reported in the literature (Tomita, 1964).

Crystal data

$\mathrm{C}_{24} \mathrm{H}_{44} \mathrm{~N}_{2}$
$M_{r}=360.61$
Monoclinic, $P 2_{\mathrm{d}}$
$a=12.664$ (3) A
$b=6.4003(15) \AA \AA$
$c=13.801$ (3) \AA
$\beta=97.015(5)^{\circ}$
$V=1110.2$ (4) \AA^{3}
$Z=2$
$D_{x}=1.079 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2500
reflections
$\theta=1.5-27.5^{\circ}$
$\mu=0.06 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.54 \times 0.35 \times 0.18 \mathrm{~mm}$

Data collection

Siemens SMART CCD areadetector diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min }=0.967, T_{\max }=0.989$
7516 measured reflections

$$
\begin{aligned}
& 2766 \text { independent reflections } \\
& 2192 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.021 \\
& \theta_{\max }=27.5^{\circ} \\
& h=-16 \rightarrow 11 \\
& k=-8 \rightarrow 8 \\
& l=-17 \rightarrow 17 \\
& \\
& \\
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0963 P)^{2}\right. \\
& \quad+0.0365 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.22 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.19 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058$
$w R\left(F^{2}\right)=0.159$
$S=1.05$
2766 reflections
238 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1

Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

N1-C24	$1.436(4)$	$\mathrm{N} 2-\mathrm{C} 22$	$1.437(6)$
$\mathrm{N} 1-\mathrm{C} 3$	$1.465(3)$	$\mathrm{N} 2-\mathrm{C} 20$	$1.464(4)$
$\mathrm{N} 2-\mathrm{C} 23$	$1.430(5)$		
$\mathrm{C} 24-\mathrm{N} 1-\mathrm{C} 3$	$114.2(2)$	$\mathrm{C} 23-\mathrm{N} 2-\mathrm{C} 20$	$112.9(3)$
$\mathrm{C} 23-\mathrm{N} 2-\mathrm{C} 22$	$112.1(3)$	$\mathrm{C} 22-\mathrm{N} 2-\mathrm{C} 20$	$114.0(3)$
$\mathrm{C} 24-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4$	$-66.4(4)$	$\mathrm{C} 22-\mathrm{N} 2-\mathrm{C} 20-\mathrm{C} 21$	$-54.8(4)$
$\mathrm{C} 24-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 2$	$170.6(3)$	$\mathrm{C} 23-\mathrm{N} 2-\mathrm{C} 20-\mathrm{C} 17$	$-157.6(3)$
$\mathrm{C} 23-\mathrm{N} 2-\mathrm{C} 20-\mathrm{C} 21$	$74.6(4)$	$\mathrm{C} 22-\mathrm{N} 2-\mathrm{C} 20-\mathrm{C} 17$	$73.1(3)$

All H atoms were located in a difference map. The C-bound H atoms were refined using a riding model $[\mathrm{C}-\mathrm{H}=0.96-0.98 \AA]$ with $U_{\text {iso }}$ constrained to be $1.5 U_{\text {eq }}$ of the carrier atom for the methyl groups and $1.2 U_{\text {eq }}$ for the remaining atoms. Both positional and isotropic displacement parameters of the amine H atom, H 1 , were refined $[\mathrm{N}-\mathrm{H}=0.84(4) \AA$. . The Friedel reflections were merged before the final refinement because of the absence of significant anomalous scattering effects.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

SA acknowledges financial support from the Higher Education Commission, Government of Pakistan, for her
training programme at X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, Penang, Malaysia. KPD wishes to acknowledge the Third World Academy of Sciences (TWAS), Trieste, Italy, for his visit to the HEJ Research Institute of Chemistry, University of Karachi, Pakistan, under the TWAS scholarship programme

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Atta-ur-Rahman, Anjum, S., Farooq, A., Khan, M. R., Parveen, Z. \& Choudhary, M. I. (1998). J. Nat. Prod. 61, 202-206.

Atta-ur-Rahman, Zaheer-ul-Haq, Khalid, A., Anjum, S., Khan, M. R. \& Choudhary, M. I. (2002). Helv. Chem. Acta, 88, 678-683.
Hara, H., Chater, A. O. \& Wiliams, L. H. J. (1982). An Enumeration of the Flowering Plants of Nepal: a Joint project of the British Musesum (Natural History), Vol. 3, p. 200. London: Mansell Book Binders Limited.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Qiu, M., Nie, R. \& Li, Z. (1994). Yumman zhiwu Yanjiu, 16, 286-288.
Rajbhandari, K. R. (2002). Ethnobotany of Nepal, p. 22. Katmandu: Ethnobotanical Society of Nepal.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Tomita, M. (1964). Tetrahedron Lett. pp. 1641-1644.
Zou, M. Z., Li, L. J., Yang, M., Yu, S. S., Cong, P. Z. \& Yu, D. Q. (1997). Phytochemistry, 46, 1090-1093.

Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368
M. Iqbal Choudhary, ${ }^{\text {a }}$

Krishna Prasad Devkota, ${ }^{\text {a }}$ Shazia Anjum, ${ }^{\text {a }}$ Azhar Abdul Rahman, ${ }^{\text {b }}$ Hoong-Kun Fun ${ }^{\text {b }}$ * and Atta-ur-Rahman ${ }^{\text {a }}$
${ }^{\mathrm{a}} \mathrm{HE}$ J Research Institute of Chemistry, International Centre for Chemical Sciences, University of Karachi, Karachi 75270, Pakistan, and ${ }^{\mathbf{b}}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Correspondence e-mail: hkfun@usm.my

20-Dimethylamino-3a-methylamino-5a-pregnane. Erratum

In the paper by Choudhary et al. [Acta Cryst. (2003), E59, o1682-o1684], there is an error in the title. The correct title should read '20-Dimethylamino-3 β-methylamino- 5α-pregnane'.
(C) 2003 International Union of Crystallography

Printed in Great Britain - all rights reserved

